skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Yao-Lun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present James Webb Space Telescope (JWST) Near Infrared Camera observations of the massive star-forming molecular cloud Sagittarius C (Sgr C) in the Central Molecular Zone (CMZ). In conjunction with ancillary mid-IR and far-IR data, we characterize the two most massive protostars in Sgr C via spectral energy distribution (SED) fitting, estimating that they each have current masses ofm*∼ 20Mand surrounding envelope masses of ∼100M. We report a census of lower-mass protostars in Sgr C via a search for infrared counterparts to millimeter continuum dust cores found with the Atacama Large Millimeter/submillimeter Array (ALMA). We identify 88 molecular hydrogen outflow knot candidates originating from outflows from protostars in Sgr C, the first such unambiguous detections in the infrared in the CMZ. About a quarter of these are associated with flows from the two massive protostars in Sgr C; these extend for over 1 pc and are associated with outflows detected in ALMA SiO line data. An additional ∼40 features likely trace shocks in outflows powered by lower-mass protostars throughout the cloud. We report the discovery of a new star-forming region hosting two prominent bow shocks and several other line-emitting features driven by at least two protostars. We infer that one of these is forming a high-mass star given an SED-derived mass ofm*∼ 9Mand associated massive (∼90M) millimeter core and water maser. Finally, we identify a population of miscellaneous molecular hydrogen objects that do not appear to be associated with protostellar outflows. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Context. Evidence that the chemical characteristics around low- and high-mass protostars are similar has been found: notably, a variety of carbon-chain species and complex organic molecules (COMs) form around both types. On the other hand, the chemical compositions around intermediate-mass (IM) protostars (2M<m*< 8M) have not been studied with large samples. In particular, it is unclear the extent to which carbon-chain species form around them. Aims. We aim to obtain the chemical compositions of a sample of IM protostars, focusing particularly on carbon-chain species. We also aim to derive the rotational temperatures of HC5N to confirm whether carbon-chain species are formed in the warm gas around these stars. Methods. We conducted Q-band (31.5–50 GHz) line survey observations toward 11 mainly IM protostars with the Yebes 40 m radio telescope. The target protostars were selected from a subsample of the source list of the SOFIA Massive Star Formation project. Assuming local thermodynamic equilibrium, we derived the column densities of the detected molecules and the rotational temperatures of HC5N and CH3OH. Results. Nine carbon-chain species (HC3N, HC5N, C3H, C4Hlinear-H2CCC,cyclic-C3H2, CCS, C3S, and CH3CCH), three COMs (CH3OH, CH3CHO, and CH3CN), H2CCO, HNCO, and four simple sulfur-bearing species (13CS, C34S, HCS+, and H2CS) are detected. The rotational temperatures of HC5N are derived to be ~20–30 K in three IM protostars (Cepheus E, HH288, and IRAS 20293+3952). The rotational temperatures of CH3OH are derived in five IM sources and found to be similar to those of HC5N. Conclusions. The rotational temperatures of HC5N around the three IM protostars are very similar to those around low- and high-mass protostars. These results indicate that carbon-chain molecules are formed in lukewarm gas (~20–30 K) around IM protostars via the warm carbon-chain chemistry process. Thus, carbon-chain formation occurs ubiquitously in the warm gas around protostars across a wide range of stellar masses. Carbon-chain molecules and COMs coexist around most of the target IM protostars, which is similar to the situation for low- and high-mass protostars. In summary, the chemical characteristics around protostars are the same in the low-, intermediate- and high-mass regimes. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract We present ∼8–40μm SOFIA-FORCAST images of seven regions of “clustered” star formation as part of the SOFIA Massive Star Formation Survey. We identify a total of 34 protostar candidates and build their spectral energy distributions (SEDs). We fit these SEDs with a grid of radiative transfer models based on the turbulent core accretion (TCA) theory to derive key protostellar properties, including initial core mass,Mc, clump environment mass surface density, Σcl, and current protostellar mass,m*. We also carry out empirical graybody (GB) estimation of Σcl, which allows a case of restricted SED fitting within the TCA model grid. We also release version 2.0 of the open-source Python packagesedcreator, which is designed to automate the aperture photometry and SED building and fitting process for sources in clustered environments, where flux contamination from close neighbors typically complicates the process. Using these updated methods, SED fitting yields values ofMc∼ 30–200M, Σcl,SED∼ 0.1–3 g cm−2, andm*∼ 4–50M. The GB fitting yields smaller values of Σcl,GB≲ 1 g cm−2. From these results, we do not find evidence for a critical Σclneeded to form massive (≳8M) stars. However, we do find tentative evidence for a dearth of the most massive (m*≳ 30M) protostars in the clustered regions, suggesting a potential impact of environment on the stellar initial mass function. 
    more » « less
    Free, publicly-accessible full text available June 3, 2026
  4. Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the binary Class 0 protostellar system BHR 71 IRS1 and IRS2 as part of the Early Planet Formation in Embedded Disks (eDisk) ALMA Large Program. We describe the12CO (J= 2–1),13CO (J= 2–1), C18O (J= 2–1), H2CO (J= 32,1–22,0), and SiO (J= 5–4) molecular lines along with the 1.3 mm continuum at high spatial resolution (∼0.″08 or ∼5 au). Dust continuum emission is detected toward BHR 71 IRS1 and IRS2, with a central compact component and extended continuum emission. The compact components are smooth and show no sign of substructures such as spirals, rings, or gaps. However, there is a brightness asymmetry along the minor axis of the presumed disk in IRS1, possibly indicative of an inclined geometrically and optically thick disk-like component. Using a position–velocity diagram analysis of the C18O line, clear Keplerian motions were not detected toward either source. If Keplerian rotationally supported disks are present, they are likely deeply embedded in their envelope. However, we can set upper limits of the central protostellar mass of 0.46Mand 0.26Mfor BHR 71 IRS1 and BHR 71 IRS2, respectively. Outflows traced by12CO and SiO are detected in both sources. The outflows can be divided into two components, a wide-angle outflow and a jet. In IRS1, the jet exhibits a double helical structure, reflecting the removal of angular momentum from the system. In IRS2, the jet is very collimated and shows a chain of knots, suggesting episodic accretion events. 
    more » « less
  5. Abstract We report high-resolution 1.3 mm continuum and molecular line observations of the massive protostar G28.20-0.05 with Atacama Large Millimeter/submillimeter Array. The continuum image reveals a ring-like structure with 2000 au radius, similar to morphology seen in archival 1.3 cm Very Large Array observations. Based on its spectral index and associated H30αemission, this structure mainly traces ionized gas. However, there is evidence for ∼30Mof dusty gas near the main millimeter continuum peak on one side of the ring, as well as in adjacent regions within 3000 au. A virial analysis on scales of ∼2000 au from hot core line emission yields a dynamical mass of ∼80M. A strong velocity gradient in the H30αemission is evidence for a rotating, ionized disk wind, which drives a larger-scale molecular outflow. An infrared spectral energy distribution (SED) analysis indicates a current protostellar mass ofm*∼ 40Mforming from a core with initial massMc∼ 300Min a clump with mass surface density of Σcl∼ 0.8 g cm−2. Thus the SED and other properties of the system can be understood in the context of core accretion models. A structure-finding analysis on the larger-scale continuum image indicates G28.20-0.05 is forming in a relatively isolated environment, with no other concentrated sources, i.e., protostellar cores, above ∼1Mfound from ∼0.1 to 0.4 pc around the source. This implies that a massive star can form in relative isolation, and the dearth of other protostellar companions within the ∼1 pc environs is a strong constraint on massive star formation theories that predict the presence of a surrounding protocluster. 
    more » « less
  6. Abstract We present a detailed study of the massive star-forming region G35.2-0.74N with Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm multi-configuration observations. At 0.″2 (440 au) resolution, the continuum emission reveals several dense cores along a filamentary structure, consistent with previous ALMA 0.85 mm observations. At 0.″03 (66 au) resolution, we detect 22 compact sources, most of which are associated with the filament. Four of the sources are associated with compact centimeter continuum emission, and two of these are associated with H30αrecombination line emission. The H30αline kinematics shows the ordered motion of the ionized gas, consistent with disk rotation and/or outflow expansion. We construct models of photoionized regions to simultaneously fit the multiwavelength free–free fluxes and the H30αtotal fluxes. The derived properties suggest the presence of at least three massive young stars with nascent hypercompact Hiiregions. Two of these ionized regions are surrounded by a large rotating structure that feeds two individual disks, revealed by dense gas tracers, such as SO2, H2CO, and CH3OH. In particular, the SO2emission highlights two spiral structures in one of the disks and probes the faster-rotating inner disks. The12CO emission from the general region reveals a complex outflow structure, with at least four outflows identified. The remaining 18 compact sources are expected to be associated with lower-mass protostars forming in the vicinity of the massive stars. We find potential evidence for disk disruption due to dynamic interactions in the inner region of this protocluster. The spatial distribution of the sources suggests a smooth overall radial density gradient without subclustering, but with tentative evidence of primordial mass segregation. 
    more » « less
  7. Abstract We present velocity-resolved Stratospheric Observatory for Infrared Astronomy (SOFIA)/upgrade German REceiver for Astronomy at Terahertz Frequencies observations of [O i ] and [C ii ] lines toward a Class I protostar, L1551 IRS 5, and its outflows. The SOFIA observations detect [O i ] emission toward only the protostar and [C ii ] emission toward the protostar and the redshifted outflow. The [O i ] emission has a width of ∼100 km s −1 only in the blueshifted velocity, suggesting an origin in shocked gas. The [C ii ] lines are narrow, consistent with an origin in a photodissociation region. Differential dust extinction from the envelope due to the inclination of the outflows is the most likely cause of the missing redshifted [O i ] emission. Fitting the [O i ] line profile with two Gaussian components, we find one component at the source velocity with a width of ∼20 km s −1 and another extremely broad component at −30 km s −1 with a width of 87.5 km s −1 , the latter of which has not been seen in L1551 IRS 5. The kinematics of these two components resemble cavity shocks in molecular outflows and spot shocks in jets. Radiative transfer calculations of the [O i ], high- J CO, and H 2 O lines in the cavity shocks indicate that [O i ] dominates the oxygen budget, making up more than 70% of the total gaseous oxygen abundance and suggesting [O]/[H] of ∼1.5 × 10 −4 . Attributing the extremely broad [O i ] component to atomic winds, we estimate an intrinsic mass-loss rate of (1.3 ± 0.8) × 10 −6 M ⊙ yr −1 . The intrinsic mass-loss rates derived from low- J CO, [O i ], and H i are similar, supporting the model of momentum-conserving outflows, where the atomic wind carries most momentum and drives the molecular outflows. 
    more » « less
  8. Abstract We present ∼10–40μm SOFIA-FORCAST images of 11isolatedprotostars as part of the SOFIA Massive (SOMA) Star Formation Survey, with this morphological classification based on 37μm imaging. We develop an automated method to define source aperture size using the gradient of its background-subtracted enclosed flux and apply this to build spectral energy distributions (SEDs). We fit the SEDs with radiative transfer models, developed within the framework of turbulent core accretion (TCA) theory, to estimate key protostellar properties. Here, we release the sedcreator python package that carries out these methods. The SEDs are generally well fitted by the TCA models, from which we infer initial core massesMcranging from 20–430M, clump mass surface densities Σcl∼ 0.3–1.7 g cm−2, and current protostellar massesm*∼ 3–50M. From a uniform analysis of the 40 sources in the full SOMA survey to date, we find that massive protostars form across a wide range of clump mass surface density environments, placing constraints on theories that predict a minimum threshold Σclfor massive star formation. However, the upper end of them*−Σcldistribution follows trends predicted by models of internal protostellar feedback that find greater star formation efficiency in higher Σclconditions. We also investigate protostellar far-IR variability by comparison with IRAS data, finding no significant variation over an ∼40 yr baseline. 
    more » « less
  9. Abstract We present Atacama Large Millimeter Array band 6/7 (1.3 mm/0.87 mm) and Very Large Array Ka-band (9 mm) observations toward NGC 2071 IR, an intermediate-mass star-forming region. We characterize the continuum and associated molecular line emission toward the most luminous protostars, i.e., IRS1 and IRS3, on ∼100 au (0.″2) scales. IRS1 is partly resolved in the millimeter and centimeter continuum, which shows a potential disk. IRS3 has a well-resolved disk appearance in the millimeter continuum and is further resolved into a close binary system separated by ∼40 au at 9 mm. Both sources exhibit clear velocity gradients across their disk major axes in multiple spectral lines including C18O, H2CO, SO, SO2, and complex organic molecules like CH3OH,13CH3OH, and CH3OCHO. We use an analytic method to fit the Keplerian rotation of the disks and give constraints on physical parameters with a Markov Chain Monte Carlo routine. The IRS3 binary system is estimated to have a total mass of 1.4–1.5M. IRS1 has a central mass of 3–5Mbased on both kinematic modeling and its spectral energy distribution, assuming that it is dominated by a single protostar. For both IRS1 and IRS3, the inferred ejection directions from different tracers, including radio jet, water maser, molecular outflow, and H2emission, are not always consistent, and for IRS1 these can be misaligned by ∼50°. IRS3 is better explained by a single precessing jet. A similar mechanism may be present in IRS1 as well but an unresolved multiple system in IRS1 is also possible. 
    more » « less